Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 264(Pt 2): 130671, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38458286

RESUMEN

In this paper we investigate polyelectrolyte complexes of sodium alginate (Alg) and chitin nanocrystals (ChNC). Formation, stability and transport properties of sunflower oil-in-water emulsions stabilized by ChNC-Alg complex were studied using dynamic light scattering (DLS), laser Doppler electrophoresis, optical microscopy, potentiometric titration, rheology and simulated digestion. It has been established that during emulsions formation, the ChNC-Alg complex is rearranged at the interface and the formation of a two-layer coating of the droplet occurs. Stabilized O/W emulsions are stable during storage, in the pH range 2-9 and centrifugal acceleration up to 2000 RCF. Presence of Ca2+ and Na+ ions in the range up to 150 mM has virtually no effect on the droplet size. Inclusion of 5 wt% Alg in the ChNC-based emulsion stabilizer system leads to a drop in Gibbs adsorption >16 times compared to the ChNC-stabilized emulsion, increase in viscosity and rheopexy index of the systems. We found that chemical properties of colloidal phase surface and rheological properties of emulsions stabilized by ChNC-Alg are mostly dependent on the droplet size, not the type of oil as a result of a comparative study of sunflower oil/liquid paraffin oil. Emulsion drops of an optimized composition are stable in the upper parts of the model gastrointestinal tract system and transport vitamin D3 to the small intestine without significant losses. The bioavailability of vitamin D3 in emulsions stabilized with the ChNC-Alg complex is higher than for emulsions stabilized with ChNC alone.


Asunto(s)
Quitina , Nanopartículas , Emulsiones/química , Quitina/química , Disponibilidad Biológica , Colecalciferol , Aceite de Girasol , Reología , Tamaño de la Partícula , Agua/química
2.
Langmuir ; 39(33): 11769-11781, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37556390

RESUMEN

In this work, we studied for the first time the formation of olive oil emulsions in water stabilized by plate-like nanocrystals with the supramolecular structure of cellulose II (pCNC). Effects of storage, pCNC concentration, and NaCl on the stability and properties of Pickering emulsions, including the creaming index, droplet size, zeta potential, acid-base surface properties, and rheology, were studied. A significant influence of the shape of nanoparticles (compared to the classical rod-like shape) on the stability parameters and rheological characteristics of emulsions is shown. Plate-like cellulose nanocrystals at a concentration of 16 g/L are able to form delamination-resistant emulsions without added electrolytes. The viscosity of pCNC-stabilized emulsions tends to decrease with increasing electrolyte concentration in the system, which is not characteristic of rod-like CNC-stabilized emulsions. This effect in pCNC-stabilized emulsions assumedly can be associated both with weak mechanical engagement between drops due to the shape of stabilizer particles and with an insignificant participation of background electrolyte cations in the formation of interdroplet interactions. Therefore, the resulting aggregates are unstable and easily destroyed, even under weak mechanical stress. As a consequence, the acid-base properties of the pCNC surface are practically independent of the emulsion preparation method (with or without electrolyte) as well as the concentration of the background electrolyte. The reduced viscosity of pCNC-stabilized emulsions in the presence of an electrolyte, coupled with the absence of acute toxicity, allows us to recommend them as a convenient oral delivery system for fat-soluble, biologically active substances. Our emulsions carrying donepezil (an anti-Alzheimer drug) showed better performance than a solution of donepezil hydrochloride in preventing memory impairment tested on laboratory mice.


Asunto(s)
Celulosa , Nanopartículas , Animales , Ratones , Emulsiones/química , Celulosa/química , Propiedades de Superficie , Nanopartículas/química , Agua/química
3.
ACS Appl Bio Mater ; 2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36018793

RESUMEN

Vitamin D3 deficiency is a major public health problem worldwide, and standard cholecalciferol formulations provide poor absorbability of the vitamin. Several biphasic formulas have been proposed to overcome the disadvantages in which Pickering emulsions stand out in particular. This paper describes olive oil-in-water Pickering emulsions stabilized by pseudoboehmite (AlOOH), cellulose nanocrystals (CNC), and their heterocoagulates. Colloidal properties were assessed by laser Doppler microelectrophoresis, potentiometric titration, and rheology. It was shown that the heterocoagulation of CNC and AlOOH led to a drastic change in surface properties (ζ-potential, pKa, and number of active centers), which promoted the formation of more stable emulsions with the smallest size of droplets and the highest viscosity among the studied samples. Simulated digestion studies showed the targeted release in the small intestine medium where cholecalciferol should be delivered. High-performance liquid chromatography showed the efficient encapsulation of cholecalciferol in emulsions (86% of initial concentration). Oral administration to laboratory mice of initial nanoparticles and emulsions stabilized by them showed nontoxicity for all of the components, and they were estimated to be class V materials. The proposed emulsions have great potential as targeted delivery systems of lipophilic drugs.

4.
Carbohydr Polym ; 284: 119162, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35287895

RESUMEN

Pickering emulsions are of interest in medicament transport systems. The properties of emulsions are influenced by the type of oil and the surface structure of nanoparticles-stabilizers. The process of formation of o/w emulsions of olive oil stabilized by chitin nanocrystals was investigated, their stability under the influence of physical factors, rheological characteristics, acute toxicity after oral administration, stability under the conditions of a model of the gastrointestinal tract, and their potential for oral transport of vitamin D3 were analyzed. Physically stable emulsions were obtained at a stabilizer concentration of 3.6 g/l. The addition of electrolyte leads to a substantial reduction in the average size of microdroplets. The resulting emulsions have rheopexy properties and the rheopexy index increases at 37 °C. Emulsions are classified as non-toxic when taken orally, physically stable in the upper digestive system, and capable of efficiently transporting vitamin D3 with a full release in the small intestine.


Asunto(s)
Quitina , Nanopartículas , Quitina/química , Colecalciferol/química , Emulsiones/química , Nanopartículas/química , Nanopartículas/toxicidad , Aceite de Oliva , Tamaño de la Partícula , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...